By: Dr. Robyn Murphy, ND
The
verdict is in, your genes are not your destiny. Advances in genetics and epigenetics
have evolved through observations that environmental factors influence genetic
expression to directly impact an individual’s health. Epigenetic changes are
reversible while effects of genetic variations are modifiable. 1,2
Today,
in the midst of personalized medicine, understanding an individual’s genetic
blueprint provides simple yet powerful strategies to significantly make a
difference in one’s health. While science reveals how general lifestyle strategies
in diet, exercise and stress reduction significantly impacts epigenetic
modifications and thus gene expression and risk for disease; it is important to
know how specific gene variations interact with an individual’s
wellbeing to influences their response to these lifestyle interventions.
Generational studies prove that these lifestyle changes not only reduce the
prevalence of disease within one’s lifetime, but that these changes are
heritable, modifying the health of generations to come. 3
“Understanding an individual’s genetic blueprint provides simple
yet powerful strategies to significantly impact health.”
Nutrients
and Epigenetics
Nutri-epigenomics
is an emerging discipline examining the role of dietary influences on gene
expression.2 Particular
interest is with dietary practices and micronutrients that affect DNA
methylation, such as; B vitamins, including folate and vitamin B12, choline,
betaine and micronutrients magnesium, zinc and copper. 2 These
vitamins are crucial for the production of SAMe, which influences epigenetic
modification through DNA methylation and thus gene expression. DNA methylation
and its relationship to disease follows the Goldilocks effect, where both too
little (hypomethylation) and too much (hypermethylation) have damaging effects.
It is important to have just the right amount to ensure the activation of genes
that promote health, and the inactivation of those that promote disease.
In
a study, women between the ages of 20 and 30 with a reduction in dietary
choline and folate saw a decrease in global methylation of DNA within the white
blood cell (WBC). However, these effects were reversible. Dietary
re-supplementation with folate lead to widespread improvements in DNA
re-methylation. What is interesting, is the strength of the association was
more robust in individuals with the T/T variation in the gene, MTHFR C677T.
This suggests that folate supplementation may be more crucial for methylation maintenance
in individuals with MTHFR polymorphisms.2
Other
genetic variations impact susceptibility to not only folate deficiency but
choline, betaine, vitamin B12 and vitamin B6, all important in the production
of SAMe. SAMe is imperative for hundreds of other biochemical pathways, such
DNA repair, elimination of toxic chemicals, hormone balance, mood, energy
production, and cellular replication. Studies show that by supplementing
mothers susceptible to low SAMe with a diet rich in methyl donors, protects the
baby from epigenetic changes due to chemical exposure, such as bisphenol A
(BPA). 2 The mother’s
at-risk for high BPA, are those with genetic variations in genes responsible
for detoxification and antioxidation (GSTT1, GSTM1, SOD2).4 By identifying
those mothers who are sensitive to depletion of SAMe or the effects of BPA,
appropriate dietary and lifestyle interventions can be implemented
preventatively, improving the health of her and her future baby.
Exercise
and Epigenetics
Regular
exercise positively impacts epigenetics and reduces the development of chronic
diseases, including cardiovascular disease, obesity, hypertension, and type 2
diabetes. 5 Nonetheless,
genetic variations influence individual response to exercise.
For
long-term benefits of exercise, the key is consistency. Intellectually, most
know that exercise is good for them; however, while some seem to carry an
innate motivation for regularity, others are lacking. The BDNF gene not
only affects the likelihood for one to continue exercising when given the
option to stop, it also moderates benefits of exercise.5 In a
randomized trial, those with the ‘met’ allele had a more positive mood and the
largest increase in aerobic tolerance following a series of exercises. 5
Predisposition
towards power exercises versus endurance is modified by genetics. Endurance
athletes more commonly carry certain versions of the ACTN3 and ACE
genes. 6 Those with
the T/T version of the SOD2 gene are more prone to exercise associated
oxidative stress. 7
Knowing
these individual tendencies towards exercise, changes in motivational
strategies, choice of activities and supplementation to improve aerobic
capacity during exercise training, such as ginseng or NAC, may improve training
outcomes. 7
Stress
and Epigenetics
Stress
has numerous long-lasting consequences to a person’s health. Not only does it
lead to short term consequences of fatigue and insomnia, it also produces lifelong
epigenetic alterations, resulting in changes in gene expression within the
brain implicated in a host of neural conditions, from Alzheimer’s-related
memory loss to depression.8,9
Variations
in the COMT gene influence one’s response to stress. Those with the
‘met’ version, known as the ‘worriers’, have a greater HPA activity (i.e.,
cortisol) in response to stressful stimuli; while those with the ‘val’ version are
‘warriors’, who typically perform better under stress. 10,11 Several studies show the impact
of COMT gene variations on the risk for developing mental health disorders,
including, generalized anxiety disorder (GAD), PTSD, depression and ADHD.12,13,14 Furthermore, COMT modifies
treatment response. Warriors have a higher response to, placebo in those with
IBS, CBT in those with addiction and exposure-based CBT in those with panic
disorder. 15,16,17 In addition, they perform better in
reducing stress hormones during meditation.18 Support for the ‘worriers’ could therefore
include L-theanine or ashwagandha, to reduce HPA-axis stimulation and stress
hormones and improve the outcome of their meditation practices.
Overall,
knowing your individual genetic susceptibility not only unveils predispositions
to disease, it also guides strategic interventions to modify the impact on
health. Scientific and technological innovations now make it possible for the
public to access the key for us all to unlock our genetic potential.
Reference:
- Hou L, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures and human epigenetics. Int J Epidemiol. 2012;41(1):79-105. doi:10.1093/ije/dyr154
- Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism, and DNA methylation. J Nutr Biochem. 2012;23(8):853-859. doi:10.1016/j.jnutbio.2012.03.003
- Kanherkar RR, Stair SE, Bhatia-Dey N, Mills PJ, Chopra D, Csoka AB. Epigenetic Mechanisms of Integrative Medicine. Evid-Based Complement Altern Med ECAM. 2017;2017. doi:10.1155/2017/4365429
- Kim JH, Lee M-R, Hong Y-C. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes. Environ Res. 2016;147:324-330. doi:10.1016/j.envres.2016.02.026
- Caldwell Hooper AE, Bryan AD, Hagger MS. What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans. J Behav Med. 2014;37(6):1180-1192. doi:10.1007/s10865-014-9567-4
- Contrò V, Schiera G, Abbruzzo A, et al. An innovative way to highlight the power of each polymorphism on elite athletes phenotype expression. Eur J Transl Myol. 2018;28(1):7186. doi:10.4081/ejtm.2018.7186
- Sen CK, Rankinen T, Vaisanen S, Rauramaa R. Oxidative stress after human exercise: effect of N-acetylcysteine supplementation. J Appl Physiol. 1994;76(6):2570-2577. doi:10.1152/jappl.1994.76.6.2570
- Stankiewicz AM, Swiergiel AH, Lisowski P. Epigenetics of stress adaptations in the brain. Brain Res Bull. 2013;98:76-92. doi:10.1016/j.brainresbull.2013.07.003
- Qigong Institute – Epigenetics and Psychoneuroimmunology. https://www.qigonginstitute.org/category/15/epigenetics-and-psychoneuroimmunology. Accessed May 1, 2017.
- Cao C, Cao L, Chen J. Differences in Sensitivity to Environment Depending on Catechol-O-Methyltransferase (COMT) Gene? A Meta-analysis of Child and Adolescent Gene-by-Environment Studies. J Youth Adolesc. 2019;48(4):655-667. doi:10.1007/s10964-019-01004-3
- Stein DJ, Newman TK, Savitz J, Ramesar R. Warriors Versus Worriers: The Role of COMT Gene Variants. CNS Spectr. 2006;11(10):745-748. doi:10.1017/S1092852900014863
- Bieliński M, Jaracz M, Lesiewska N, et al. Association between COMT Val158Met and DAT1 polymorphisms and depressive symptoms in the obese population. Neuropsychiatr Dis Treat. 2017;13:2221-2229. doi:10.2147/NDT.S138565
- Jung M, Mizuno Y, Fujisawa TX, et al. The Effects of COMT Polymorphism on Cortical Thickness and Surface Area Abnormalities in Children with ADHD. Cereb Cortex N Y N 1991. December 2018. doi:10.1093/cercor/bhy269
- Walder DJ, Trotman HD, Cubells JF, Brasfield J, Tang Y, Walker EF. Catechol-O-Methyltransferase (COMT) Modulation of Cortisol Secretion in Psychiatrically At-risk and Healthy Adolescents. Psychiatr Genet. 2010;20(4):166-170. doi:10.1097/YPG.0b013e32833a1ff3
- Hall KT, Lembo AJ, Kirsch I, et al. Catechol-O-Methyltransferase val158met Polymorphism Predicts Placebo Effect in Irritable Bowel Syndrome. PLOS ONE. 2012;7(10):e48135. doi:10.1371/journal.pone.0048135
- Carroll KM, Herman A, DeVito EE, Frankforter TL, Potenza MN, Sofuoglu M. Catehol-o-methyltransferase gene Val158met polymorphism as a potential predictor of response to computer-assisted delivery of cognitive-behavioral therapy among cocaine-dependent individuals: Preliminary findings from a randomized controlled trial. Am J Addict. 2015;24(5):443-451. doi:10.1111/ajad.12238
- Lonsdorf TB, Rück C, Bergström J, et al. The COMTval158met polymorphism is associated with symptom relief during exposure-based cognitive-behavioral treatment in panic disorder. BMC Psychiatry. 2010;10:99. doi:10.1186/1471-244X-10-99
- Jung Y-H, Kang D-H, Byun MS, et al. Influence of brain-derived neurotrophic factor and catechol-O-methyl transferase polymorphisms on effects of meditation on plasma catecholamines and stress. Stress. 2012;15(1):97-104. doi:10.3109/10253890.2011.592880